
Data Acquisition Toolbox™
SDK User's Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ SDK User’s Guide
© COPYRIGHT 2017–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2017 Online only New for Version 1.1 (Release 2017a)
September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

SDK Overview
1

Toolbox and Adaptor . 1-2
Hardware Driver Adaptor . 1-2

SDK Contents . 1-4

Adaptor Creation Summary . 1-5
Tips . 1-5

Explore the SDK Demo Adaptor
2

Demo Adaptor Description . 2-2
Source Files . 2-2
Class Definitions in MATLAB . 2-3
Executables . 2-3

Enable the Demo Adaptor . 2-5

Session Workflows with the Demo Adaptor 2-6
Device Discovery and Configuration . 2-6
Single Scan Input and Output . 2-8
Streaming Input and Output . 2-10

Test the Demo Adaptor . 2-13
Run Individual Tests . 2-13
Run a Test Suite . 2-14

iii

Contents

Custom Adaptor Creation
3

Create Your Adaptor from the Demo Adaptor 3-2
Edit and Build Your Adaptor . 3-2
Use Your Adaptor in a Session . 3-4

Modify Demo Tests for Your Adaptor . 3-8
Further Suggestions . 3-10

Errors and Exceptions . 3-12
Nonstreaming . 3-12
Streaming . 3-12

Channel Groups . 3-14
Channel Group Description . 3-14
Channel Group Restrictions . 3-15
Device Discovery . 3-15

Custom Functions . 3-18

Vendor Adaptor Templates . 3-20
Typical Workflow to Create Adaptor 3-20

Deliver Your Adaptor . 3-22

Adaptor Functions for a Data Acquisition Session 3-23
Device Discovery . 3-23
Session Configuration and Single Scan Operation 3-24
Streaming . 3-25
Session Reset . 3-26

API Reference
4

Adaptor API Reference . 4-2
Lifetime . 4-2
Enumeration . 4-3
Hardware Management . 4-7

iv Contents

Vendor and Device Discovery . 4-8
Subsystem Discovery . 4-10
Configuration . 4-16
Reservation . 4-20
Single Scans . 4-20

Streaming API Reference . 4-23
Initialization and Configuration . 4-23
Start and Stop . 4-25
Data Availability . 4-26
Transfer Data . 4-27

State and Sequence Diagrams
5

State Machine Diagram . 5-2

Streaming Sequence Diagrams . 5-4

Foreground Streaming Sequences . 5-5
Sequence for Finite Foreground Input 5-5
Sequence for Finite Foreground Output 5-7
Sequence for Finite Foreground Duplex Channel 5-9

Background Streaming Sequences . 5-12
Sequence for Finite Background Input 5-12
Sequence for Continuous Background Input with Stop 5-14
Sequence for Finite Background Input with Wait 5-16
Sequence for Finite Background Input with Stop Race 5-18

Sequence for Errors and Exceptions . 5-21

Functions — Alphabetical List
6

v

SDK Overview

• “Toolbox and Adaptor” on page 1-2
• “SDK Contents” on page 1-4
• “Adaptor Creation Summary” on page 1-5

1

Toolbox and Adaptor

Hardware Driver Adaptor
The hardware driver adaptor is the interface between the data acquisition engine and the
hardware driver. The adaptor’s main purpose is to pass information between MATLAB®

and your hardware device via its driver.

Hardware drivers are provided by the device vendor. For example, to acquire data using a
National Instruments® board, the appropriate version of the driver must be installed on
your system. Hardware drivers are not installed as part of the toolbox, but a suitable
driver is usually installed on PCs that are equipped with a sound card. For any other
devices, the drivers must be installed.

1 SDK Overview

1-2

See Also

Related Examples
• “Adaptor Creation Summary” on page 1-5

 See Also

1-3

SDK Contents
An installation of Data Acquisition Toolbox includes the following folders to support its
SDK. Your MATLAB installation location is referred to as matlabroot.

Folder Description
matlabroot\toolbox\daq\daqsdk\bin
\win64

Built executable files for demo and vendor
adaptors.

matlabroot\toolbox\daq\daqsdk
\tests\+daq\+sdk\+tests

Test files for adaptors. The installed set of
test files is for the demo adaptor.

matlabroot\toolbox\daq\daqsdk\src
\daqadaptor

Adaptor C++ source files, one folder for
each adaptor, and one other folder named
Shared for elements common to all
adaptors. DemoAdaptor contains all the
source files for the demo adaptor.
VendorAdaptor contains a set of
templates.

See Also

Related Examples
• “Adaptor Creation Summary” on page 1-5
• “Create Your Adaptor from the Demo Adaptor” on page 3-2
• “Modify Demo Tests for Your Adaptor” on page 3-8
• “Vendor Adaptor Templates” on page 3-20

1 SDK Overview

1-4

Adaptor Creation Summary
This topic provides a summary of adaptor creation with the SDK. For details and examples
of these steps, see “Create Your Adaptor from the Demo Adaptor” on page 3-2.

1 Copy the demo adaptor or vendor adaptor source files into your working folder.
2 Change the names of the source files to reflect your own adaptor name.
3 Update the content of the source files so that the new names are used for references

to other files, the adaptor, devices, and vendor.
4 Update the source file functions to use your driver code. For more information, see

“Adaptor API Reference” on page 4-2.
5 Build the adaptor with the buildAdaptor function. Add the folder containing the

built MEX-file to your MATLAB path.
6 Copy the demo adaptor tests and modify them for your adaptor. Add the test package

folder to your MATLAB path.
7 Run the tests on your adaptor.
8 Deliver the finished adaptor MEX-file with your device driver and supporting files.

Tips
• Update, build, and test your adaptor iteratively one step at a time. Develop and test in

small increments, proceeding upon the success of each step.
• When modifying the source files, do not remove any of the functions. Even if you do

not use all the functions, they must be present when using buildAdaptor.

See Also

Related Examples
• “Create Your Adaptor from the Demo Adaptor” on page 3-2
• “Modify Demo Tests for Your Adaptor” on page 3-8

More About
• “Vendor Adaptor Templates” on page 3-20

 Adaptor Creation Summary

1-5

• “Deliver Your Adaptor” on page 3-22

1 SDK Overview

1-6

Explore the SDK Demo Adaptor

• “Demo Adaptor Description” on page 2-2
• “Enable the Demo Adaptor” on page 2-5
• “Session Workflows with the Demo Adaptor” on page 2-6
• “Test the Demo Adaptor” on page 2-13

2

Demo Adaptor Description
The demo adaptor installed with Data Acquisition Toolbox consists of the files described
in the following tables.

Source Files
The demo adaptor source files are in matlabroot\toolbox\daq\daqsdk\src
\daqadaptor\DemoAdaptor.

File Description
demoadaptor.hpp, demoadaptor.cpp Wraps device driver code in methods that

allow you to configure, discover, and
enumerate the hardware in MATLAB.

daqstream_analog.hpp,
daqstream_analog.cpp,
daqstream_digital.hpp,
daqstream_digital.cpp

Implement DAQStream objects for an
analog and digital subsystems, that allow
you to stream data to and from the
hardware.

custom_demo.cpp Dispatches calls from MATLAB to custom
functions in the demo adaptor. At a
minimum this must contain a
customizeMap function.

In addition to these files, the demo adaptor also uses some of the source files in
matlabroot\toolbox\daq\daqsdk\src\daqadaptor\Shared:

Files Purpose
adaptorfactory.cpp,
adaptorfactory.hpp

Create adaptor for dispatch and streaming.

daqadaptor.cpp, daqadaptor.hpp Implement adaptor class.
daqapi.h C interface.
daqdatatypes.hpp C++ equivalents of session data types.
daqinterfaces.hpp IAdaptor/IDriver, called before streaming.
daqstream.cpp, daqstream.hpp Transfer streaming data between MATLAB

and device driver

2 Explore the SDK Demo Adaptor

2-2

Files Purpose
dispatcher.cpp, dispatcher.hpp,
dispatcher_common.hpp

MATLAB calls to convert data and call
adaptor functions.

fakevendordriver.hpp Fake or virtual driver for testing and
demonstrations.

globals.h Global settings.
mxconvert.hpp Utility functions for data type conversions.

Class Definitions in MATLAB
The demo adaptor class definitions are in matlabroot\toolbox\daq\daqsdk\+daq\
+demoadaptor.

File Description
Session.m Defines daq.demoadaptor.Session

class.
VendorInfo.m Defines vendor driver class for

daq.getVendor.

In addition to the files in this table, the demo adaptor also uses some of the class
definition files in matlabroot\toolbox\daq\daqsdk\+daq\+sdk.

Executables
The following demo adaptor executables are in matlabroot\toolbox\daq\daqsdk
\bin\win64.

File Description
DemoAdaptor.mexw64 Built demo adaptor.
daqasyncio.dll Accommodates streaming channel

communication.
daqmlconverter.dll Handles data type conversion.

 Demo Adaptor Description

2-3

See Also
Functions
enableDemoAdaptorDiscovery

Related Examples
• “Enable the Demo Adaptor” on page 2-5
• “Session Workflows with the Demo Adaptor” on page 2-6
• “Test the Demo Adaptor” on page 2-13

2 Explore the SDK Demo Adaptor

2-4

Enable the Demo Adaptor
By default, the demo adaptor is disabled when first installed. Use the following MATLAB
command to enable it.

daq.sdk.utility.enableDemoAdaptorDiscovery

The adaptor is now ready for use. Confirm this with the command:

daq.getVendors

The output includes an entry for the demo adaptor with the vendor ID of mw:

index ID Operational Comment
----- -- ----------- ------------------------
1 mw true MathWorks

See Also
Functions
enableDemoAdaptorDiscovery

Related Examples
• “Demo Adaptor Description” on page 2-2
• “Session Workflows with the Demo Adaptor” on page 2-6
• “Test the Demo Adaptor” on page 2-13

 Enable the Demo Adaptor

2-5

Session Workflows with the Demo Adaptor
In this section...
“Device Discovery and Configuration” on page 2-6
“Single Scan Input and Output” on page 2-8
“Streaming Input and Output” on page 2-10

Device Discovery and Configuration
When you create a data acquisition session, it applies to a specific vendor, and allows you
to add applicable devices and channels. Discovery and configuration is part of setting up
your session. This example shows a typical session setup with the demo adaptor.

Note To enable the demo adaptor in your installation, see the instructions in “Enable the
Demo Adaptor” on page 2-5.

v = daq.getVendors

v =

Number of vendors: 2

index ID Operational Comment
----- -- ----------- ------------------------
1 ni false Click here for more info
2 mw true MathWorks

Properties, Methods, Events

Additional data acquisition vendors may be available as
downloadable support packages.
Open the Support Package Installer to install additional vendors.

d = daq.getDevices

d =

Data acquisition devices:

2 Explore the SDK Demo Adaptor

2-6

index Vendor Device ID Description
----- ------ --------- ------------------
1 mw MWDev0 MathWorks MW314159
2 mw MWDev1 MathWorks MW314159
3 mw MWDev2 MathWorks MW628318

With a listing of available vendors and devices, you can create a session and add channels
to it.

s = daq.createSession('mw')

s =

Data acquisition session using MathWorks hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Properties, Methods, Events

To see details about one of the devices, use its index to access the array of devices.

d(1)

mw: MathWorks MW314159 (Device ID: 'MWDev0')
 Analog input subsystem supports:
 3 ranges supported
 Rates from 0.1 to 1000000.0 scans/sec
 2 channels ('ai0','ai1')
 'Voltage','Current' measurement types

 Analog output subsystem supports:
 3 ranges supported
 Rates from 0.1 to 1000000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage','Current' measurement types

The first and second devices are the same model, so this example uses one for input
('ai0' and the other for output ('ao0').

ch1 = addAnalogInputChannel(s,'MWDev0','ai0','voltage')

ch1 =

Data acquisition analog input voltage channel 'ai0' on device 'MWDev0':

 Session Workflows with the Demo Adaptor

2-7

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

ch2 = addAnalogOutputChannel(s,'MWDev1','ao0','voltage')

ch2 =

Data acquisition analog output voltage channel 'ao0' on device 'MWDev1':

 TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ao0'
 Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

View the session to see the configuration.

s

s =

Data acquisition session using MathWorks hardware:
 No data queued. Will run at 1000 scans/second.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- ------------------- ---------------- ----
 1 ai MWDev0 ai0 Voltage (Diff) -10 to +10 Volts
 2 ao MWDev1 ao0 Voltage (SingleEnd) -10 to +10 Volts

The session is now ready to send and receive single scans or streams of data.

Single Scan Input and Output
A single scan is when you send an output or read input from the channels at one moment
in time. The data transfer is handled by the adaptor MEX layer. For the demo adaptor this
is contained in the MEX-file matlabroot\toolbox\daq\daqsdk\bin
\win64\DemoAdaptor.mexw64, which provides the functionality shown in the following
diagram.

2 Explore the SDK Demo Adaptor

2-8

To generate a single scan analog output of 1.25 V, enter the following code.

outputSingleScan(s,1.25)

DemoDriver output: 1.25

To read a single scan of analog input:

data = inputSingleScan(s)

With only one input channel, this returns only a single value. If you add more analog input
channels to the session, inputSingleScan returns a vector, with an element for each
channel.

ch3 = addAnalogInputChannel(s,'MWDev2','ai0','voltage');
data = inputSingleScan(s)

 Session Workflows with the Demo Adaptor

2-9

data =

 0 200

Remove channels from the session you no longer need.

removeChannel(s,[1 2 3]);

Streaming Input and Output
Streaming involves a sequence of input or output data on each channel, typically a
waveform, comprised of many scans. Streaming can be accomplished in the foreground
(blocking MATLAB until the stream is complete), or in the background (running
asynchronously while MATLAB continues). Streaming might involve more scans or
samples than the device memory can hold. For these reasons, the toolbox uses streaming
channels to accommodate data flow. This allows data to be sent and received without
causing a memory overflow, and without interrupting MATLAB.

2 Explore the SDK Demo Adaptor

2-10

Use MWDev2 to generate a 100 Hz sine wave in the background for 10 seconds. The
default sample rate is 1000 scans per second; that amounts to 1000 cycles for 10,000
samples.

ch4 = addAnalogOutputChannel(s,'MWDev2','ao1','voltage')

ch4 =

Data acquisition analog output voltage channel 'ao1' on device 'MWDev2':

 TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ao1'
 Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

 Session Workflows with the Demo Adaptor

2-11

Y = sin(linspace(0,2*pi*1000,10000))' % 1000 cycles for 10000 samples;
queueOutputData(s,Y);
s

s =

Data acquisition session using MathWorks hardware:
 Will run for 10000 scans (10 seconds) at 1000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- ------------------- ---------------- ----
 1 ao MWDev2 ao1 Voltage (SingleEnd) -10 to +10 Volts

The session display now indicates the number of queued scans, and how long it will run to
output all the data. You can start the output.

startBackground(s)
s.IsRunning

 logical

 1

pause(10)
s.IsRunning

 logical

 0

See Also
Functions
enableDemoAdaptorDiscovery

Related Examples
• “Demo Adaptor Description” on page 2-2
• “Enable the Demo Adaptor” on page 2-5
• “Test the Demo Adaptor” on page 2-13
• “Channel Groups” on page 3-14

2 Explore the SDK Demo Adaptor

2-12

Test the Demo Adaptor

In this section...
“Run Individual Tests” on page 2-13
“Run a Test Suite” on page 2-14

Run Individual Tests
A collection of tests is available for testing functionality of the demo adaptor. These are all
contained in the subfolders of matlabroot\toolbox\daq\daqsdk\tests\+daq\+sdk
\+tests. Each test file name begins with the letter t and has the extension .m.

To get help and information on running an individual test, use the MATLAB help command
with the full package and test name. For example, to learn about the test defined in
matlabroot\toolbox\daq\daqsdk\tests\+daq\+sdk\+tests\+workflow
\tinputsinglescan.m, type:

help daq.sdk.tests.workflow.tinputsinglescan

As indicated in the display help, you can run this test with the following commands:

t = daq.sdk.tests.workflow.tinputsinglescan;
results = run(t);
table(results)

Running daq.sdk.tests.workflow.tinputsinglescan
..
Done daq.sdk.tests.workflow.tinputsinglescan

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ ________ ____________

 'daq.sdk.tests.workflow.tinputsinglescan/verifyInputSingleScan' true false false 1.7093 [1×1 struct]
 'daq.sdk.tests.workflow.tinputsinglescan/verifyInputSingleScanLoop' true false false 1.3631 [1×1 struct]

Tip When modifying functionality in your custom adaptor, you should also modify the
corresponding test. Be sure that the test runs as expected before moving on to your next
modification.

 Test the Demo Adaptor

2-13

Run a Test Suite
You can run all the tests in a package folder using the runtests function. For example,
to run all the tests contained in daq\+sdk\+tests\+workflow, use the following
commands:

results = runtests('daq.sdk.tests.workflow','Verbosity','Concise');
table(results)

 Name Passed Failed Incomplete Duration Details
 __ ______ ______ __________ ________ ____________

 'daq.sdk.tests.workflow.tbackground/verifyAnalogInputSession' true false false 1.6622 [1×1 struct]
 'daq.sdk.tests.workflow.tbackground/verifyAnalogOutputSession' true false false 0.060079 [1×1 struct]
 'daq.sdk.tests.workflow.tbackground/verifyAnalogInputContinuous' true false false 5.0601 [1×1 struct]
 'daq.sdk.tests.workflow.tbackground/verifyAnalogOutputContinuous' true false false 5.1115 [1×1 struct]
.
.

To run a suite of tests that includes all subpackages of a specific package, use the
'IncludeSubpackages' option in the runtests function call. The following code runs
all tests below the tests package:
results = runtests('daq.sdk.tests','IncludeSubpackages',true,'Verbosity','Concise');
table(results)

Tip Run your complete modified test suite when all your individual updates are
implemented and built.

See Also
Functions
enableDemoAdaptorDiscovery | run | runtests

Related Examples
• “Demo Adaptor Description” on page 2-2
• “Enable the Demo Adaptor” on page 2-5
• “Create Your Adaptor from the Demo Adaptor” on page 3-2
• “Modify Demo Tests for Your Adaptor” on page 3-8

2 Explore the SDK Demo Adaptor

2-14

Custom Adaptor Creation

• “Create Your Adaptor from the Demo Adaptor” on page 3-2
• “Modify Demo Tests for Your Adaptor” on page 3-8
• “Errors and Exceptions” on page 3-12
• “Channel Groups” on page 3-14
• “Custom Functions” on page 3-18
• “Vendor Adaptor Templates” on page 3-20
• “Deliver Your Adaptor” on page 3-22
• “Adaptor Functions for a Data Acquisition Session” on page 3-23

3

Create Your Adaptor from the Demo Adaptor
Use the demo adaptor as a template for creating a custom adaptor which you can build,
test, and access from the toolbox. The following sections provide a sequence of steps for
adaptor modification. The examples in this topic create a custom adaptor named
MyAdaptor with a vendor ID of my.

Edit and Build Your Adaptor
This section describes the step to make a new custom adaptor based on the shipped demo
adaptor. This example modifies only the names of the adaptor, vendor, and devices,
without any functional changes. You build the custom adaptor in a local folder, then add
the build folders to the MATLAB path. This section uses two folder locations throughout:

Location Description
matlabroot MATLAB installation location. This is the

MATLAB used both for the building of the
adaptor, and for accessing the adaptor
through a data acquisition session.

C:\adaptors\daqsdk Local file location where the new adaptor is
modified and built.

1 Create the build area in a location of your choice. This example works with a new
folder, C:\adaptors\daqsdk. Create a subfolder here called src, and within that a
subfolder named daqadaptor.

2 Copy the folder DemoAdaptor from matlabroot\toolbox\daq\daqsdk\src
\daqadaptor into C:\adaptors\daqsdk\src\daqadaptor.

3 Inside C:\adaptors\daqsdk\src\daqadaptor, rename the folder DemoAdapter
to be MyAdaptor.

Navigate into MyAdaptor, and rename three of its files according to the following
table:

Original Name New Name
custom_demo.cpp custom_my.cpp
demoadaptor.cpp myadaptor.cpp

3 Custom Adaptor Creation

3-2

Original Name New Name
demoadaptor.hpp myadaptor.hpp

4 With a text editor, modify each of the three new files in the previous table, replacing
all occurrences of text DemoAdaptor, demoadaptor, DemoDriver, and
custom_demo.cpp with MyAdaptor, myadaptor, MyDriver, and custom_my.cpp,
respectively, keeping the letter capitalization style with each replacement.

5 Further edit the contents of myadaptor.cpp as shown in the following table:

Original Text Updated Text
{
 shortName = "MW";
 fullName = "MathWorks";
 driverName = "DemoAdaptor";

 return DAQSuccess;
}

{
 shortName = "MY";
 fullName = "MyAdaptor";
 driverName = "MyDriver";

 return DAQSuccess;
}

prefix = "MWDev"; prefix = "MyDev";
DAQStatus MyDriver::inputSingleScanImpl(ChannelGroupIndex groupIndex, DataScan &data) const
{
 deviceManager_->inputSingleScan(groupIndex, data);
 return DAQSuccess;
}

DAQStatus MyDriver::inputSingleScanImpl(ChannelGroupIndex groupIndex, DataScan &data) const
{
// deviceManager_->inputSingleScan(groupIndex, data);
 data.push_back(1.125);
 data.push_back(2.250);
 return DAQSuccess;
}

The last row of this table causes the inputSingleScanImpl function to return hard
data, rather than calling the driver function to read data.

With these modifications saved and in place, you are ready to build the adaptor.
6 In MATLAB, run the following utility to build the executable MEX-file for MyAdaptor:

daq.sdk.utility.mex.buildAdaptor('MyAdaptor','custom_my', ...
 'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor','C:\adaptors\daqsdk\bin\win64')

The function input arguments specify the adaptor name, source code file, source file
location, and where to put the built output.

Note The buildAdaptor function requires that your system be configured with
Microsoft® Visual Studio® 2013 or later.

 Create Your Adaptor from the Demo Adaptor

3-3

7 Create the folder C:\adaptors\daqsdk\+daq, and copy into it the folder
+demoadaptor found at matlabroot\toolbox\daq\daqsdk\+daq\
+demoadaptor.

8 Navigate into C:\adaptors\daqsdk\+daq, and rename +demoadaptor to
+myadaptor.

9 Navigate into C:\adaptors\daqsdk\+daq\+myadaptor, and edit these two
MATLAB files in that folder:

Session.m
VendorInfo.m

• In both of these files, replace all occurrences of the texts DemoAdaptor and
demoadaptor with MyAdaptor and myadaptor, respectively, keeping the letter
capitalization style with each replacement.

• In the VendorInfo file, use % characters to comment out the lines that hide the
adaptor, between the begin and end remove indicators. The change looks like this:
% BEGIN REMOVE
% if daq.internal.getOptions().HideDAQSDKAdaptor
% throw(MException(message('daqsdk:HardwareInfo:VendorIsHidden', mfilename('class'))));
% end
% END REMOVE

• Save and close the files.

Your modified adaptor is now ready for use.

Use Your Adaptor in a Session
This example shows how to access the vendor and device represented by your modified
adaptor. A data acquisition session with your adaptor allows you to add channels and get
information from the device.

Start MATLAB, and use the following commands to make your adaptor available.

addpath 'C:\adaptors\daqsdk\bin\win64'
addpath 'C:\adaptors\daqsdk'

Then you can access your adaptor.
v = daq.getVendors

v =

Number of vendors: 2

3 Custom Adaptor Creation

3-4

index ID Operational Comment
----- ----------- ----------- ------------------------
1 ni false Click here for more info
2 my true MyAdaptor

Use the index of the vendor ID my to get more information.
vendor = v(2)

vendor =

Data acquisition vendor 'MyAdaptor':

 ID: 'my'
 FullName: 'MyAdaptor'
AdaptorVersion: '3.13 (R2018a)'
DriverVersion: '1.0.0'
IsOperational: true

Create a session for your device.
s = daq.createSession('my')

s =

Data acquisition session using MyAdaptor hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Add an analog input channel to the session, associated with the device MyDev0, channel
ai0.
ch1 = addAnalogInputChannel(s,'MyDev0','ai0','Voltage')

ch1 =

Data acquisition analog output voltage channel 'ao0' on device 'MyDev0':

TerminalConfig: SingleEnded
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ao0'
 Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

Add a second analog input channel.
ch2 = addAnalogInputChannel(s,'MyDev0','ai1','Voltage');

View the session to see the channel configurations.
s

 Create Your Adaptor from the Demo Adaptor

3-5

s =

Data acquisition session using MyAdaptor hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ---------------- ----
 1 ai MyDev0 ai0 Voltage (Diff) -10 to +10 Volts
 2 ai MyDev0 ai1 Voltage (Diff) -10 to +10 Volts

Examine the objects so far in the base workspace.

whos

 Name Size Bytes Class Attributes

 ch1 1x1 8 daq.sdk.AnalogInputVoltageChannel
 ch2 1x1 8 daq.sdk.AnalogInputVoltageChannel
 s 1x1 8 daq.myadaptor.Session
 v 1x2 16 daq.VendorInfo
 vendor 1x1 8 daq.myadaptor.VendorInfo

With the example data hard coded into the adaptor inputSingleScanImpl function, you
can execute a single scan measurement on the session channels.

data = inputSingleScan(s)

data =

 1.1250 2.2500

You can also read streaming input data, in this case provided by the demo adaptor
DAQstream object. The session default configuration captures 1000 scans in 1 second.

stdata = startForeground(s);
whos stdata

 Name Size Bytes Class Attributes

 stdata 1000x2 16000 double

stdata contains a column of 1000 samples for each channel. View the first six rows.

stdata(1:6,:)

 0 0.2500
 0.2487 0.4987
 0.4818 0.7318
 0.6845 0.9345

3 Custom Adaptor Creation

3-6

 0.8443 1.0943
 0.9511 1.2011

When you are finished, delete the session and clear the objects.

delete(s)
clear v vendor s ch1 ch2

See Also
Functions
buildAdaptor

Related Examples
• “Modify Demo Tests for Your Adaptor” on page 3-8

More About
• “Adaptor Creation Summary” on page 1-5
• “Adaptor Functions for a Data Acquisition Session” on page 3-23

 See Also

3-7

Modify Demo Tests for Your Adaptor
This topic describes how to copy demo adaptor tests and modify them for use with your
own adaptor. The steps below assume you have an adaptor called MyAdaptor, as created
in the example of “Create Your Adaptor from the Demo Adaptor” on page 3-2.

1 Copy matlabroot\toolbox\daq\daqsdk\tests to C:\adaptors\daqsdk
\tests

2 In a file browser, navigate to the SDK tests package folder C:\adaptors\daqsdk
\tests\+daq\+sdk.

3 Rename the folder +tests to +mytests.

The next steps require you to edit and save your test files. You can use the MATLAB
editor, or any editor of your choice. Because the tests are MATLAB files, using the
MATLAB editor is recommended for debugging purposes.

4 Navigate to C:\adaptors\daqsdk\tests\+daq\+sdk\+mytests, and open the
file hardwareconfiguration.m. In MATLAB you can navigate to its folder and
open the editor:

cd ('C:\adaptors\daqsdk\tests\+daq\+sdk\+mytests')
edit hardwareconfiguration

Change the vendor and device parameters in this manner, using your own names.

Original Text Updated Text
% HardwareInfo
 VendorName = 'mw';
 VendorFullName = 'MathWorks';

 DeviceID1 = 'MWDev0';
 DeviceID2 = 'MWDev1';
 DeviceID3 = 'MWDev2';

% HardwareInfo
 VendorName = 'my';
 VendorFullName = 'MyAdaptor';

 DeviceID1 = 'MyDev0';
 DeviceID2 = 'MyDev1';
 DeviceID3 = 'MyDev2';

5 Save and close the file.

The updated vendor information now allows your tests to run on your adaptor.
6 Modify all files in C:\adaptors\daqsdk\tests\+daq\+sdk\+mytests\

+workflow\ so that all lines use mytests instead of tests. For example,
classdef tbackground < daq.sdk.mytests.workflow.BaseDAQSessionWorkflowTester

3 Custom Adaptor Creation

3-8

7 Restart MATLAB. Use the following commands to add your adaptor and tests to the
command path.

addpath 'C:\adaptors\daqsdk\bin\win64'
addpath 'C:\adaptors\daqsdk'
addpath 'C:\adaptors\daqsdk\tests'

Run the test for single scan inputs.

t = daq.sdk.mytests.workflow.tinputsinglescan;
results = run(t);
table(results)

Running daq.sdk.mytests.workflow.tinputsinglescan
..
Done daq.sdk.mytests.workflow.tinputsinglescan

ans =

 2×6 table

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ ________ ____________

 'daq.sdk.mytests.workflow.tinputsinglescan/verifyInputSingleScan' true false false 1.692 [1×1 struct]
 'daq.sdk.mytests.workflow.tinputsinglescan/verifyInputSingleScanLoop' true false false 1.2947 [1×1 struct]

8 For streaming tests, there are three files to modify in the folder C:\adaptors
\daqsdk\tests\+daq\+sdk\+mytests\+development\+streaming.

Modify tstreambasic.m using your own vendor and device information, as follows:

Original Text Updated Text
properties(TestParameter)
 VendorName = {'mw'}; % Add vendor adaptor name here.
 DeviceID = {'MWDev1'}; % Add device IDs you wish to test here.
 end

properties(TestParameter)
 VendorName = {'my'}; % Add vendor adaptor name here.
 DeviceID = {'MyDev1'}; % Add device IDs you wish to test here.
 end

Modify both tstreamread.m and tstreamwrite.m using your own adaptor
information, as follows:

Original Text Updated Text
properties (ClassSetupParameter)
 adaptorName = {'DemoAdaptor'}
end

properties (ClassSetupParameter)
 adaptorName = {'MyAdaptor'}
end

 Modify Demo Tests for Your Adaptor

3-9

Original Text Updated Text
adaptorPath = fullfile(matlabroot, ...
'toolbox','daq','daqsdk','bin',computer('arch'));

adaptorPath = 'c:\adaptors\daqsdk\bin\win64';

9 You can now run any of the streaming tests on your adaptor. For example, restart
MATLAB and enter the following code:

addpath 'C:\adaptors\daqsdk\bin\win64'
addpath 'C:\adaptors\daqsdk'
addpath 'C:\adaptors\daqsdk\tests'
t = daq.sdk.mytests.development.streaming.tstreamread;
results = run(t);
table(results)

Running daq.sdk.mytests.development.streaming.tstreamread
........
Done daq.sdk.mytests.development.streaming.tstreamread

ans =

 8×6 table

 Name Passed Failed Incomplete Duration Details
 __ ______ ______ __________ ________ ____________

 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value1,numOfBlocks=value1,numChannels=value1)' true false false 10.698 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value1,numOfBlocks=value1,numChannels=value2)' true false false 11.543 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value2,numOfBlocks=value1,numChannels=value1)' true false false 10.124 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value2,numOfBlocks=value1,numChannels=value2)' true false false 11.087 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=value1,numOfBlocks=value1,numChannels=value1)' true false false 10.159 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=value1,numOfBlocks=value1,numChannels=value2)' true false false 10.568 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=value2,numOfBlocks=value1,numChannels=value1)' true false false 10.079 [1×1 struct]
 'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=value2,numOfBlocks=value1,numChannels=value2)' true false false 11.137 [1×1 struct]

Further Suggestions
Run Test Suites

You can run the full suite of tests for your adaptor by specifying the package folder to use
all the tests contained in it.
results = runtests('daq.sdk.mytests','IncludeSubpackages',true,'Verbosity','Concise');
table(results)

Modify Functionality Tests

• As you write your adaptor, you must modify the test files to correspond to the
functionality implemented for your device. In deciding the sequence in which you

3 Custom Adaptor Creation

3-10

implement and test functionality, consider “Session Workflows with the Demo Adaptor”
on page 2-6.

• In addition to adaptor name, you must modify where applicable the vendor name,
device driver name, device names, vendor ID, etc.

See Also
Functions
run | runtests

Related Examples
• “Test the Demo Adaptor” on page 2-13
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

 See Also

3-11

Errors and Exceptions

Nonstreaming
To indicate that a standard SDK function has resulted in an error for an expected reason,
return the appropriate error code (as opposed to DAQSuccess), as provided in include/
daqsdktypes.h.

To indicate that a custom SDK function has resulted in an error, throw a DAQDiagnostic
(see daqinterfaces.hpp) containing a custom error code and a diagnosis message
string.

To indicate that a standard SDK function has resulted in an error for a reason that is
specific to the function of the custom adaptor (vendor-specific error), throw a
DAQDiagnostic.

You can define a custom error code as a negative value less than
daqsdk::DAQErr_ReservedRangeEnd (see daqsdktypes.h). while a custom warning
code can be defined as a positive value greater than
daqsdk::DAQWrn_ReservedRangeEnd.

Streaming
To indicate that an error has occurred during the configuration of the stream
(configureStream), return a custom error code. You should also implement the
DAQStreamAnalog::getDiagnosticFromStatus, which when given a custom error
code, returns a string describing the error condition.

To indicate that an error has occurred during streaming (that is, after the stream has
started but before it is done or has stopped), return a custom error code or throw an
exception.

See Also

Related Examples
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

3 Custom Adaptor Creation

3-12

More About
• “Adaptor API Reference” on page 4-2
• “Streaming API Reference” on page 4-23
• “Sequence for Errors and Exceptions” on page 5-21

 See Also

3-13

Channel Groups
In this section...
“Channel Group Description” on page 3-14
“Channel Group Restrictions” on page 3-15
“Device Discovery” on page 3-15

Channel Group Description
A simplified view of a DAQ device is that actual devices provide channels with common
functions, logically grouped into subsystems. For example, all channels that provide
analog input data may be thought of as belonging to an analog input subsystem.

Another view of this DAQ device is as a provider and consumer of data. The largest unit of
data that can be acquired or generated simultaneously, by one or more channels, is a
scan. The logical grouping that acquires or consumes one or more scans of data is a
channel group. The definition of the channel group is usually constrained by the driver
and hardware. For example, when all channels belonging to a single analog input
subsystem also share a single clock.

A channel group is an aggregation of channels, usually of the same subsystem, which
operate together. For example, all the analog output subsystem channels on a device must
be configured, reserved, and act together to generate data as a single scan.

You should define channel groups in a way that reflects the driver constraints, and
provide a means for identifying all channels belonging to the group for acquiring and
generating scans. Typically, channel groups provide functions to stream data to or from a
device buffer.

Each channel on the device has a unique address, defined by device, subsystem, and
channel ID. Each channel must be assigned to one channel group. The following diagram
illustrates one possible channel group arrangement. In this scenario, analog output (AO)
channels 0 and 1 might serve a different purpose than AO channels 2 and 3; while analog
input (AI) channels 0–3 are used all together.

3 Custom Adaptor Creation

3-14

For reference information on the functions used in configuring channel groups, see
“Hardware Management” on page 4-7.

Channel Group Restrictions
• All channels in a group operate together. This allows synchronized streaming to the

extent supported by the hardware.
• A channel cannot belong to more than one group.
• All channels in a group are requested, reserved, and released together.
• By default, a channel group—and therefore all its channels—can be accessed by only

one data acquisition session at a time. You cannot add channels to a session if any
other channels in their groups are already added to a different session. If your driver
allows a group to be accessed by different sessions, you can control this behavior
using the isRegistrationReservationImpl function.

Device Discovery
Device discovery occurs by calling daq.getDevices in a MATLAB session. Part of
discovery is enumeration, whereby all devices and channels are indexed. The result of
enumeration is a set of channel group handles, which the adaptor uses to address
channels on the numerous devices of the session.

A channel group usually includes all the channels of one subsystem of one device, as
shown in the following diagram. But other configurations are possible. For example, a

 Channel Groups

3-15

channel group could include all channels of all subsystems in a single device, or all
channels of the same type of subsystem across several devices.

This diagram illustrates the process of enumeration performed during daq.getDevices.
Through the driver, the adaptor accesses the numerous supported devices, and
determines their subsystems and channels. The adaptor then derives an absolute (unique)
index for each channel, and assigns each to a channel group. Each channel group has an
index, and a resulting unique channel group handle. Through these handles, the adaptor
performs the operations of a data acquisition session.

3 Custom Adaptor Creation

3-16

You can create handles to any of the possible objects in your configuration, such as
devices, channels, and subsystems, but the adaptor templates provided with Data
Acquisition Toolbox use only channel group indices.

See Also

More About
• “Vendor Adaptor Templates” on page 3-20
• “Adaptor API Reference” on page 4-2
• “Streaming API Reference” on page 4-23
• “Streaming Input and Output” on page 2-10
• “Streaming Sequence Diagrams” on page 5-4

 See Also

3-17

Custom Functions
Custom functionality provided by your adaptor that is not part of the standard session-
based interface can be exposed to MATLAB via the DAQ SDK custom interface. For
example, your device might provide an on-board power supply.

Note This topic assumes experience writing MEX-files.

To add a custom function, first review the custom functions available in the demo adaptor
in the folder matlabroot\matlab\toolbox\daq\daqsdk\+daq\+demoadaptor\
+custom. The installed files in this folder are:

testHasInputsHasOutputs.m
testHasInputsNoOutputs.m
testNoInputsNoOutputs.m
testThrowCustomExceptions.m

Use these steps to create your own custom function:

1 Add a function to the MyDriver class (MyDriver::customFunction).
2 Add a function to the MyAdaptor class (MyAdaptor::customFunction) that calls

MyDriver::customFunction with the designated:

• Inputs
• Outputs
• Custom error code

3 Update custom_my.cpp to:

• Define a function to call (dispatch) the custom adaptor function
MyAdaptor::customFunction.

• Update the customizeMap function to add:

functionMap["myCustomFunction"] = customFunction;

where customFunction is the name of the MEX-function that calls
MyAdaptor::customFunction, and myCustomFunction is the name of
function in MATLAB.

4 Define your custom MATLAB function myCustomFunction.m in the +daq\
+myadaptor\+custom subpackage for your adaptor.

3 Custom Adaptor Creation

3-18

• Choose the appropriate template from \+daq\+demoadaptor\+custom\ to copy
and rename.

• Has Inputs, Has Outputs
• Has Inputs, No Outputs
• No Inputs, No Outputs

• Rename the file to perform the desired function, for example,
myCustomFunction.m.

• Edit myCustomFunction.m to

• Update: functionName = 'myCustomFunction';
• Provide the inputs to the function as a structure.

For functionality that is not part of the standard session interface, contact MathWorks®

technical support at https://www.mathworks.com/support/contact_us to let us
know what functionality you need.

See Also

More About
• “C Matrix API” (MATLAB)
• “Vendor Adaptor Templates” on page 3-20
• “Errors and Exceptions” on page 3-12
• “Deliver Your Adaptor” on page 3-22

 See Also

3-19

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

Vendor Adaptor Templates
The Data Acquisition Toolbox SDK is installed with a set of source file stubs for an adaptor
called VendorAdaptor. The source files are installed in the folder:

matlabroot\toolbox\daq\daqsdk\src\daqadaptor\VendorAdaptor

The basic components and structure of the source files for this adaptor are the same as
those in the DemoAdaptor. If you need to create an adaptor from scratch, it is
recommended that you use a copy of the VendorAdaptor source files. The following
table indicates the purpose of each source file.

File Description
vendoradaptor.hpp,
vendoradaptor.cpp

Wraps device driver code in methods that allow you
to configure, discover, and enumerate the hardware
in MATLAB.

daqstream_analog.hpp,
daqstream_analog.cpp

Implements a DAQStream object for an analog
subsystem, that allows you to stream data to and
from the hardware.

custom_vendor.cpp Dispatches custom calls from MATLAB to the adaptor.
At a minimum this must contain a customizeMap
function.

Typical Workflow to Create Adaptor
To create an adaptor from the set of template files in the folder VendorAdaptor, use the
following steps. Assume that you want to name the adaptor MyAdaptor.

1 Create a copy of the entire folder, and name it MyAdaptor.
2 Working in the new folder called MyAdaptor, change the names of the files:

Original Name New Name
vendoradaptor.hpp myadaptor.hpp
vendoradaptor.cpp myadaptor.cpp
custom_vendor.cpp custom_my.cpp

3 Update the content of the files so that the new names are used for references to other
files, the adaptor, devices, and vendor.

3 Custom Adaptor Creation

3-20

4 Update the functions to use your driver code. For more information, see “Adaptor API
Reference” on page 4-2.

5 Build the adaptor with the buildAdaptor function.

See Also

Related Examples
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

More About
• “Adaptor Creation Summary” on page 1-5
• “Custom Functions” on page 3-18

 See Also

3-21

Deliver Your Adaptor
When you have a custom adaptor for delivery, you can create a toolbox to deliver the
adaptor MEX-file along with your device driver and any other support files, such as
documentation, data files, examples, and so on.

You should document any adaptor behavior that involves:

• Differences from standard data acquisition session behavior
• Custom functions

For information on creating and distributing a toolbox, see “Toolbox Distribution”
(MATLAB).

For creating and delivering documentation to support your toolbox, see “Display Custom
Documentation” (MATLAB).

For your custom examples, see “Display Custom Examples” (MATLAB).

3 Custom Adaptor Creation

3-22

Adaptor Functions for a Data Acquisition Session
In this section...
“Device Discovery” on page 3-23
“Session Configuration and Single Scan Operation” on page 3-24
“Streaming” on page 3-25
“Session Reset” on page 3-26

This topic lists the adaptor and streaming functions that need to be implemented for each
stage and operation of a session lifetime.

Device Discovery
Device discovery is accomplished with the daq.getDevices function. Implement the
following adaptor functions for this task.

Adaptor Functions Notes
initImpl
enumerateDevicesImpl
commitDevicesImpl
getOrderOfChannelAdditionImpl

Devices — Identify devices for driver.

enumerateSubsystemsImpl
commitSubsystemsImpl

Device Subsystems — Repeated for each
device.

enumerateChannelsImpl
commitChannelsImpl

Subsystem Channels — Repeated for each
subsystem of each device.

getChannelGroupIndexImpl Channel Index — Repeated for each
channel of each subsystem.

getVendorInfoImpl
getDriverVersionImpl

Vendor Information — Get the vendor
information and driver information.

getDeviceInfoImpl
getFirmwareVersionImpl

Device Information — Get the device
information. Repeated for each device.

 Adaptor Functions for a Data Acquisition Session

3-23

Adaptor Functions Notes
getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getCouplingsImpl
getDefaultCouplingImpl
getSampleTypesImpl
getDefaultSamplingTypeImpl
getNativeDataTypeImpl
getRateLimitImpl
getResolutionImpl
getTerminalConfigsImpl
getRangesAvailableForTerminalConfigImpl
getRangesAvailableForTerminalConfigImpl
getDefaultTerminalConfigImpl
isOnDemandOperationSupportedImpl
getChannelNamesImpl

Analog Input — Repeated for each device
with an analog input subsystem.

getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getNativeDataTypeImpl
getRateLimitImpl
getResolutionImpl
getTerminalConfigsImpl
getRangesAvailableForTerminalConfigImpl
getDefaultTerminalConfigImpl
isOnDemandOperationSupportedImpl
getChannelNamesImpl

Analog Output — Repeated for each
device with an analog output subsystem.

getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getRateLimitImpl
isOnDemandOperationSupportedImpl
getDigitalChannelTypesImpl
getChannelNamesImpl

Digital Input/Output — Repeated for each
device with a digital input/output
subsystem.

Session Configuration and Single Scan Operation
The session configuration controls which devices and channel settings you use for data
input and output. For each of the following data acquisition session functions, implement
the corresponding adaptor functions.

3 Custom Adaptor Creation

3-24

Session Function Adaptor Functions Notes
addAnalogInputChannel

addAnalogOutputChanne
l

addDigitalChannel

addChannelImpl
getGroupRateLimitsImpl
setRateImpl
getRateImpl

Repeated for each channel
added to the session.

removeChannel removeChannelImpl
getGroupRateLimitsImpl

session.Rate unreserveChannelGroupImpl
setRateImpl
getRateImpl

Set the session Rate
property value.

inputSingleScan inputSingleScanImpl
outputSingleScan outputSingleScanImpl
prepare isDeviceAvailableImpl

reserveChannelGroupImpl

release unreserveChannelGroupImpl

Streaming
Streaming uses DAQStream objects for transferring data between the session and the
device driver. The session configuration is necessary to support streaming.

Implement the following functions for the adaptor or stream objects, as indicated in the
notes.

Session Function Source Functions Notes
queueOutputData No adaptor stream function.

 Adaptor Functions for a Data Acquisition Session

3-25

Session Function Source Functions Notes
startForeground

startBackground

makeStream
initialize
terminate
configureStream
unconfigureStream
registerCallbacks
unregisterCallbacks
prestart
start
stop
getNumInputScansAvailable
getNumScansOutputByHardware
getOutputBufferSize
flushOutputBuffer
isDeviceDone
read
write
readWrite

Implemented in
daqstream* code. See
“Streaming API Reference”
on page 4-23 and
“Streaming Sequence
Diagrams” on page 5-4.

stop stop Session function used for
stopping background
operation.

Session Reset
Session Function Adaptor Functions Notes
daqreset releaseChannelsImpl Repeated for all channels.

releaseSubsystemsImpl Repeated for all subsystems.
releaseDevicesImpl Repeated for all devices.
termImpl Terminate sessions.

See Also

More About
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

3 Custom Adaptor Creation

3-26

• “Adaptor API Reference” on page 4-2
• “Streaming API Reference” on page 4-23

 See Also

3-27

API Reference

• “Adaptor API Reference” on page 4-2
• “Streaming API Reference” on page 4-23

4

Adaptor API Reference
This topic provides an overview of each function included in the demo adaptor source file,
demoadaptor.cpp, grouped in the following categories. The vendoradaptor.cpp
template includes similar functions.

In this section...
“Lifetime” on page 4-2
“Enumeration” on page 4-3
“Hardware Management” on page 4-7
“Vendor and Device Discovery” on page 4-8
“Subsystem Discovery” on page 4-10
“Configuration” on page 4-16
“Reservation” on page 4-20
“Single Scans” on page 4-20

Lifetime
Lifetime functions include those that involve the loading and unloading of the driver
interface.

initImpl

Syntax DAQStatus DemoDriver::initImpl()
Purpose Initialize and load implementation of daqsdk::IDriver interface
Inputs None
Output None
Return status DAQErr_Driver_Init on failure.

DAQSuccess on success.

termImpl

Syntax DAQStatus DemoDriver::termImpl()

4 API Reference

4-2

Purpose Terminate and unload implementation of daqsdk::IDriver
interface

Inputs None
Output None
Return status DAQErr_Driver_Term on failure.

DAQSuccess on success.

Enumeration
Enumeration functions involve the recognition of devices, subsystems, and channels.

enumerateDevicesImpl

Syntax DemoDriver::enumerateDevicesImpl(Index &deviceCount)
const

Purpose Enumerate devices available via vendor driver
Inputs None
Output Number of the devices enumerated
Return status DAQErr_Driver_EnumerateDevices on failure.

DAQSuccess on success.

commitDevicesImpl

Syntax DemoDriver::commitDevicesImpl(Index deviceCount)
Purpose Inform the driver that the enumerated devices are to be committed,

in enumerated order, for use by the adaptor
Inputs Number of devices enumerated
Output None
Return status DAQErr_Driver_CommitDevices on failure.

DAQSuccess on success.

 Adaptor API Reference

4-3

enumerateSubsystemsImpl

Syntax DemoDriver::enumerateSubsystemsImpl(Index
deviceIndex, Index &subsystemCount) const

Purpose Enumerate the subsystems available via for a given device
Inputs Index of the given device
Output Number of the subsystems enumerated
Return status DAQErr_Driver_EnumerateSubsystems on failure.

DAQSuccess on success.

commitSubsystemsImpl

Syntax DemoDriver::commitSubsystemsImpl(Index deviceIndex,
Index subsystemCount)

Purpose Inform the driver that the enumerated subsystems, for a given device,
are to be committed, in enumerated order, for use by the adaptor

Inputs Index of the given device, number of the subsystems enumerated
Output None
Return status DAQErr_Driver_CommitSubsystems on failure.

DAQSuccess on success.

enumerateChannelsImpl

Syntax DemoDriver::enumerateChannelsImpl(Index deviceIndex,
Index subsystemIndex, Index &channelCount) const

Purpose Enumerate the channels available via for a given subsystem and
device

Inputs Index of the given device, the index of the given subsystem
Output Number of the channels enumerated
Return status DAQErr_Driver_EnumerateChannels on failure.

DAQSuccess on success.

4 API Reference

4-4

commitChannelsImpl

Syntax DemoDriver::commitChannelsImpl(Index deviceIndex,
Index subsystemIndex, Index channelCount)

Purpose Inform the driver that the enumerated channels, for a given device
and subsystem, are to be committed, in enumerated order, for use by
the Adaptor

Inputs Index of the given device, the index of the given subsystem, the
number of channels enumerated

Output None
Return status DAQErr_Driver_CommitChannels on failure.

DAQSuccess on success.

getChannelGroupIndexImpl

Syntax DemoDriver::getChannelGroupIndexImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, Index &channelGroupIndex) const

Purpose Return the channel group index corresponding to a specified channel
Inputs Index of the specified device, index of the specified subsystem, index

of the specified channel
Output Channel group index
Return status DAQErr_Driver_GetChannelGroupIndex on failure.

DAQSuccess on success.

determineOrderOfChannelAdditionImpl

Syntax DemoDriver::getOrderOfChannelAdditionImpl(daqsdk::Ord
erOfChannelsInGroup &orderOfChannelsInGroup) const

Purpose Return an enumeration representing the order in which channels
indices are sorted, by the driver, in channel groups

Inputs None
Output Order of channels within channel groups

 Adaptor API Reference

4-5

Return status DAQErr_Driver_OrderOfChannelAddition on failure.

DAQSuccess on success.

Channel groups contain a list of channels ordered first by device, then by subsystem, and
finally by channel. The group must acquire data from requested channels either in the
listed order ("Sorted") or in the order requested ("InOrderOfAddition"). For example, if
the group contains four channels and a user requests channels 4, 2, and 1, they should
expect data from the channel group either in the order 4, 2, 1 (the order in which the
channels were added) or in the order 1, 2, 4 (sorted). See “Channel Groups” on page 3-14.

releaseDevicesImpl

Syntax DemoDriver::releaseDevicesImpl(Index deviceIndex)
Purpose Release the resources committed by the driver for a specified device
Inputs Index of the device resources to release
Output None
Return status DAQErr_Driver_ReleaseDevices on failure.

DAQSuccess on success.

releaseSubsystemsImpl

Syntax DemoDriver::releaseSubsystemsImpl(Index deviceIndex,
Index subsystemIndex)

Purpose Release the resources committed by the driver for a specified
subsystem and device

Inputs Index of the device resources to release, index of the subsystem
resources to release

Output None
Return status DAQErr_Driver_ReleaseSubsystems on failure.

DAQSuccess on success.

4 API Reference

4-6

releaseChannelsImpl

Syntax DemoDriver::releaseChannelsImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex)

Purpose Release the resources committed by the driver for a specified channel
of a subsystem of a device

Inputs Index of the device resources to release, index of the subsystem
resources to release, index of the channel resources to release

Output None
Return status DAQErr_Driver_ReleaseChannels on failure.

DAQSuccess on success.

Hardware Management
Hardware management functions control the configuration of channel groups.

addChannelImpl

Syntax DemoDriver::addChannelImpl(Index deviceIndex, Index
subsystemIndex, Index channelIndex)

Purpose Register the specified channel with its channel group
Inputs Index of the device, index of the subsystem for given device, index of

the channel for the given subsystem
Output None
Return status DAQErr_Driver_AddChannel on failure.

DAQSuccess on success.

removeChannelImpl

Syntax DemoDriver::removeChannelImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex)

Purpose Unregister the specified channel from its channel group
Inputs Index of the device, index of the subsystem for given device, index of

the channel for the given subsystem

 Adaptor API Reference

4-7

Output None
Return status DAQErr_Driver_RemoveChannel on failure.

DAQSuccess on success.

reserveChannelGroupImpl

Syntax DemoDriver::reserveChannelGroupImpl(ChannelGroupIndex
groupIndex)

Purpose Reserve the specified channel group and all its resources
Inputs Index of the channel group
Output None
Return status DAQErr_Driver_ReserveChannelGroup on failure.

DAQSuccess on success.

unreserveChannelGroupImpl

Syntax DemoDriver::unreserveChannelGroupImpl(ChannelGroupInd
ex groupIndex)

Purpose Unreserve/release the specified channel group and all its resources
Inputs Index of the channel group
Output None
Return status DAQErr_Driver_UnreserveChannelGroup on failure.

DAQSuccess on success.

Vendor and Device Discovery
These functions retrieve information about vender and device.

getDriverVersionImpl

Syntax DemoDriver::getDriverVersionImpl(uint32_T &major,
uint32_T &minor, uint32_T &patch) const

Purpose Return driver version number

4 API Reference

4-8

Inputs None
Output Major version number, minor version number, patch version number
Return status DAQErr_Driver_GetDriverVersion on failure.

DAQSuccess on success.

getVendorInfoImpl

Syntax DemoDriver::getVendorInfoImpl(std::string &shortName,
std::string &fullName, std::string &driverName) const

Purpose Return relevant vendor information (name and driver-name)
Inputs None
Output Vendor shortname (typically used as a vendor ID), vendor fullname,

driver name (including full path)
Return status DAQErr_Driver_GetVendorInfo on failure.

DAQSuccess on success.

getDeviceInfoImpl

Syntax DemoDriver::getDeviceInfoImpl(Index deviceIndex,
std::string &model, std::string &prefix, std::string
&id, std::string &serialNumber, bool
&isRecognizedDevice) const

Purpose Return relevant device information
Inputs Index of the device
Output Device model, device prefix (e.g., 'Dev', 'Audio', etc.), device ID,

device serial number, indication of whether the driver recognizes and
supports the device

Return status DAQErr_Driver_GetDeviceInfo on failure.

DAQSuccess on success.

 Adaptor API Reference

4-9

getFirmwareVersionImpl

Syntax DemoDriver::getFirmwareVersionImpl(Index deviceIndex,
uint32_T &major, uint32_T &minor, uint32_T &patch)
const

Purpose Return firmware version number
Inputs None
Output Major version number, minor version number, patch version number
Return status DAQErr_Driver_GetFirmwareVersion on failure.

DAQSuccess on success.

Subsystem Discovery
These functions retrieve information about the subsystem.

getSubsystemsOfTypeImpl

Syntax DemoDriver::getSubsystemsOfTypeImpl(Index
deviceIndex, IndexList &subsystemIndices,
daqsdk::Subsystem subsystemType,
daqsdk::TransferDirection transferDirection) const

Purpose Return subsystems of a given type (Analog, Digital, etc.) and direction
(Input, Output)

Inputs Index of the device, subsystem type, transfer direction
Output List of subsystem indices with the given type/direction or empty if no

matches are found
Return status DAQErr_Driver_GetSubsystemsOfType on failure to execute the

request (but not when no subsystems are found).

DAQSuccess on success.

4 API Reference

4-10

getMeasurementTypesImpl

Syntax DemoDriver::getMeasurementTypesImpl(Index
deviceIndex, Index subsystemIndex,
std::vector<daqdatatypes::MeasurementType>
&measurementTypes) const

Purpose Return the measurement types supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem
Output List of measurement types supported by the specified subsystem
Return status DAQErr_Driver_GetMeasurementTypes on failure to execute the

request (but not when no subsystems are found).

DAQSuccess on success.

getDefaultMeasurementTypeImpl

Syntax DemoDriver::getDefaultMeasurementTypeImpl(Index
deviceIndex, Index subsystemIndex,
daqdatatypes::MeasurementType
&defaultMeasurementType) const

Purpose Return the default measurement type supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem
Output Default measurement types supported by the specified subsystem
Return status DAQErr_Driver_GetDefaultMeasurementType on failure.

DAQSuccess on success.

getRateLimitImpl

Syntax DemoDriver::getRateLimitImpl(Index deviceIndex, Index
subsystemIndex, daqdatatypes::RateLimit &rateLimit)
const

Purpose Return the rate limits supported by a specified subsystem and device
Inputs Index of the device, index of the subsystem

 Adaptor API Reference

4-11

Output Rate limits supported by the specified subsystem
Return status DAQErr_Driver_GetRateLimit on failure.

DAQSuccess on success.

getResolutionImpl

Syntax DemoDriver::getResolutionImpl(Index deviceIndex,
Index subsystemIndex, uint8_T &resolution) const

Purpose Return the measurement resolution supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem
Output Measurement resolution supported by the specified subsystem
Return status DAQErr_Driver_GetResolution on failure.

DAQSuccess on success.

getTerminalConfigsImpl

Syntax DemoDriver::getTerminalConfigsImpl(Index deviceIndex,
Index subsystemIndex,
std::vector<daqdatatypes::TerminalConfiguration>
&terminalConfigurations) const

Purpose Return the terminal configurations supported by a specified
subsystem and device for each channel

Inputs Index of the device, index of the subsystem
Output Terminal configurations supported by the specified subsystem
Return status DAQErr_Driver_GetTerminalConfigs on failure.

DAQSuccess on success.

getRangesAvailableForTerminalConfigImpl

Syntax DemoDriver::getRangesAvailableForTerminalConfigImpl(I
ndex deviceIndex, Index subsystemIndex,
daqdatatypes::TerminalConfiguration terminalConfig,
std::vector<daqdatatypes::Range> &ranges) const

4 API Reference

4-12

Purpose Return ranges supported by specified terminal configuration for
subsystem and device

Inputs Index of the device, index of the subsystem, terminal configuration
type

Output Ranges supported by the specified terminal configuration for a given
subsystem

Return status DAQErr_Driver_GetRangesAvailableForTerminalConfig on
failure.

DAQSuccess on success.

getDefaultTerminalConfigsImpl

Syntax DemoDriver::getDefaultTerminalConfigsImpl(Index
deviceIndex, Index subsystemIndex,
std::vector<daqdatatypes::TerminalConfiguration>
&defaultTerminalConfigs) const

Purpose Return the default terminal configuration types supported by a
specified subsystem and device

Inputs Index of the device, index of the subsystem
Output Default terminal configuration types supported by the specified

subsystem
Return status DAQErr_Driver_GetDefaultTerminalConfigs on failure.

DAQSuccess on success.

isOnDemandOperationSupportedImpl

Syntax DemoDriver::isOnDemandOperationSupportedImpl(Index
deviceIndex, Index subsystemIndex, bool &isSupported)
const

Purpose Indicate whether on-demand operations are supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem
Output Whether on-demand operations are supported by the specified

subsystem

 Adaptor API Reference

4-13

Return status DAQErr_Driver_IsOnDemandOperationSupported on failure.

DAQSuccess on success.

getCouplingsImpl

Syntax DemoDriver::getCouplingsImpl(Index deviceIndex, Index
subsystemIndex, std::vector<daqdatatypes::Coupling>
&couplings) const

Purpose Return the couplings supported by a specified subsystem and device
Inputs Index of the device, index of the subsystem
Output Couplings supported by the specified subsystem
Return status DAQErr_Driver_GetCouplings on failure.

DAQSuccess on success.

getDefaultCouplingImpl

Syntax DemoDriver::getDefaultCouplingImpl(Index deviceIndex,
Index subsystemIndex, daqdatatypes::Coupling
&defaultCoupling) const

Purpose Return the default coupling supported by a specified subsystem and
device

Inputs Index of the device, index of the subsystem
Output Default coupling supported by the specified subsystem
Return status DAQErr_Driver_GetDefaultCoupling on failure.

DAQSuccess on success.

getSampleTypesImpl

Syntax DemoDriver::getSampleTypesImpl(Index deviceIndex,
Index subsystemIndex,
std::vector<daqdatatypes::SampleType> &sampleTypes)
const

Purpose Return the sample types supported by a specified subsystem and
device

4 API Reference

4-14

Inputs Index of the device, index of the subsystem
Output Sample types supported by the specified subsystem
Return status DAQErr_Driver_GetSampleTypes on failure.

DAQSuccess on success.

getDefaultSamplingTypeImpl

Syntax DemoDriver::getDefaultSamplingTypeImpl(Index
deviceIndex, Index subsystemIndex,
daqdatatypes::SampleType &defaultSampleType) const

Purpose Return the default sample type supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem
Output Default sample type supported by the specified subsystem
Return status DAQErr_Driver_GetDefaultSamplingType on failure.

DAQSuccess on success.

getDigitalChannelTypesImpl

Syntax DemoDriver::getDigitalChannelTypesImpl(Index
deviceIndex, Index subsystemIndex,
std::vector<daqdatatypes::MeasurementType>
&channelMeasurementTypes) const

Purpose Return the digital channel type supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem
Output Vector of measurement types for the channels of the specified

subsystem
Return status DAQErr_Driver_GetDigitalChannelTypes on failure.

DAQSuccess on success.

 Adaptor API Reference

4-15

getChannelNamesImpl

Syntax DemoDriver::getChannelNamesImpl(Index deviceIndex,
Index subsystemIndex, std::vector<std::string>
&channelNames) const

Purpose Return the channel names supported by a specified subsystem and
device

Inputs Index of the device, index of the subsystem
Output Channel names supported by the specified subsystem
Return status DAQErr_Driver_GetChannelNames on failure.

DAQSuccess on success.

Configuration
Configuration functions control rates, ranges, and coupling.

getRateImpl

Syntax DemoDriver::getRateImpl(ChannelGroupIndex groupIndex,
daqsdk::float64 &rate) const

Purpose Return the rate supported by a specified channel group in its current
configuration

Inputs Index of the group
Output Rate supported by the specified channel group
Return status DAQErr_Driver_GetRate on failure.

DAQSuccess on success.

setRateImpl

Syntax DemoDriver::setRateImpl(ChannelGroupIndex groupIndex,
daqsdk::float64 rate)

Purpose Set the rate for a specified channel group in its current configuration
Inputs Index of the group, rate

4 API Reference

4-16

Output None
Return status DAQErr_Driver_SetRate on failure.

DAQSuccess on success.

getChannelCouplingImpl

Syntax DemoDriver::getChannelCouplingImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex,
daqdatatypes::Coupling &coupling) const

Purpose Return the channel coupling of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel
Output Coupling supported by the specified channel
Return status DAQErr_Driver_GetChannelCoupling on failure.

DAQSuccess on success.

setChannelCouplingImpl

Syntax DemoDriver::setChannelCouplingImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex, std::string
coupling)

Purpose Set the channel coupling of a specified channel for a given subsystem
and device

Inputs Index of the device, index of the subsystem, index of the channel
Output None
Return status DAQErr_Driver_SetChannelCoupling on failure.

DAQSuccess on success.

getChannelTerminalConfigImpl

Syntax DemoDriver::getChannelTerminalConfigImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, daqdatatypes::TerminalConfiguration
&terminalConfig) const

 Adaptor API Reference

4-17

Purpose Return the terminal configuration of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel
Output Terminal configuration supported by the specified channel
Return status DAQErr_Driver_GetChannelTerminalConfig on failure.

DAQSuccess on success.

setChannelTerminalConfigImpl

Syntax DemoDriver::setChannelTerminalConfigImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, std::string terminalConfig)

Purpose Set the terminal configuration of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel
Output None
Return status DAQErr_Driver_SetChannelTerminalConfig on failure.

DAQSuccess on success.

getChannelRangeImpl

Syntax DemoDriver::getChannelRangeImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex,
daqdatatypes::Range &range) const

Purpose Return the range of a specified channel for a given subsystem and
device

Inputs Index of the device, index of the subsystem, index of the channel
Output Range supported by the specified channel
Return status DAQErr_Driver_GetChannelRange on failure.

DAQSuccess on success.

4 API Reference

4-18

setChannelRangeImpl

Syntax DemoDriver::setChannelRangeImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex,
daqdatatypes::Range range)

Purpose Set the range of a specified channel for a given subsystem and device
Inputs Index of the device, index of the subsystem, index of the channel
Output None
Return status DAQErr_Driver_SetChannelRange on failure.

DAQSuccess on success.

getChannelDirectionImpl

Syntax DemoDriver::getChannelDirectionImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, daqdatatypes::ChannelDirection
&direction) const

Purpose Return the direction of a specified digital channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel
Output Channel direction for specified channel.
Return status DAQErr_Driver_GetChannelDirection on failure.

DAQSuccess on success.

setChannelDirectionImpl

Syntax DemoDriver::setChannelDirectionImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, std::string direction)

Purpose Set the direction of a specified digital channel for a given subsystem
and device

Inputs Index of the device, index of the subsystem, index of the channel,
direction of the channel specified as "Input" or "Output"

Output None

 Adaptor API Reference

4-19

Return status DAQErr_Driver_SetChannelDirection on failure.

DAQSuccess on success.

Reservation
Reservation functions query device and channel availability.

isDeviceAvailableImpl

Syntax DemoDriver::isDeviceAvailableImpl(Index deviceIndex,
bool &isDeviceAvailable) const

Purpose Return whether or not a specified device is still available, connected,
committed, and enumerated

Inputs Index of the device
Output Return whether or not the device is available as previously committed

and enumerated
Return status DAQErr_Driver_IsDeviceAvailable on failure.

DAQSuccess on success.

isRegistrationReservationImpl

Syntax DemoDriver::isRegistrationReservationImpl(Index
deviceIndex, bool &isReservation) const

Purpose Return whether or not registering a channel in a channel group
reserves the channel group

Inputs Index of the channel group
Output Return whether or not “registration is reservation.” (See “Channel

Groups” on page 3-14.)
Return status DAQErr_Driver_IsRegistrationReservation on failure.

DAQSuccess on success.

Single Scans
Single scan functions acquire or generate a static scan of data.

4 API Reference

4-20

inputSingleScan

Syntax DemoDriver::inputSingleScanImpl(ChannelGroupIndex
groupIndex, DataScan &data) const

Purpose Acquire a scan of data for all channels registered with a channel
group

Inputs None
Output Acquired scan of data
Return status DAQErr_Driver_InputSingleScan on failure.

DAQSuccess on success.

OutputSingleScan

Syntax DemoDriver::outputSingleScanImpl(ChannelGroupIndex
groupIndex, DataScan &&outputData) const

Purpose Generate a scan of data for all channels registered with a channel
group

Inputs Data to generate output
Output None
Return status DAQErr_Driver_OutputSingleScan on failure.

DAQSuccess on success.

See Also

Related Examples
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

More About
• “Errors and Exceptions” on page 3-12
• “Channel Groups” on page 3-14
• “Streaming API Reference” on page 4-23

 See Also

4-21

• “Custom Functions” on page 3-18

4 API Reference

4-22

Streaming API Reference

In this section...
“Initialization and Configuration” on page 4-23
“Start and Stop” on page 4-25
“Data Availability” on page 4-26
“Transfer Data” on page 4-27

Streaming is used in the generation or acquisition of clocked data to allow asynchronous
operation that does not block MATLAB. Stream channels accommodate the flow of data
separately from the session-dispatcher route. This also allows data sets that might exceed
the size of the memory on the device.

The following functions are defined in the analog streaming source file
daqstream_analog.cpp. Corresponding functions for digital I/O streaming are defined
in daqstream_digital.cpp.

Initialization and Configuration
makeStream

Syntax static DAQStream* makeStream(...)
Purpose Factory method to create channel group stream.
Inputs Fixed signature
Output Pointer to DAQStream
Usage notes Use as shown in daqstream_analog.cpp.

initialize

Syntax int64_T DAQStreamAnalog::initialize()
Purpose Initialize channel group after constructor.
Inputs None
Output None

 Streaming API Reference

4-23

terminate

Syntax int64_T DAQStreamAnalog::terminate()
Purpose Terminate DAQ stream prior to its destruction.
Inputs None
Output None

configureStream

Syntax int64_T DAQStreamAnalog::configureStream()
Purpose Configure group of channels on the DAQ device driver for streaming

operation.
Inputs None
Output None

unconfigureStream

Syntax int64_T DAQStreamAnalog::unconfigureStream()
Purpose Unconfigure groups of channels when DAQStream channel is closed

from MATLAB.
Inputs None
Output None

registerCallbacks

Syntax int64_T DAQStreamAnalog::registerCallbacks()
Purpose Register any callback handlers required by DAQ device driver

following configureStream.
Inputs None
Output None

unregisterCallbacks

Syntax int64_T DAQStreamAnalog::unregisterCallbacks()

4 API Reference

4-24

Purpose Unregister immediately prior to unconfigureStream any callback
handlers registered with DAQ device driver.

Inputs None
Output None

Start and Stop
prestart

Syntax int64_T DAQStreamAnalog::prestart()
Purpose Called on a per-run basis prior to the streaming operation start,

typically to reset scan counters.
Inputs None
Output None

start

Syntax int64_T DAQStreamAnalog::start()
Purpose Start the streaming operation for the given channelGroupHandle.
Inputs None
Output None

stop

Syntax int64_T DAQStreamAnalog::stop()
Purpose Stop the streaming operation for the given channelGroupHandle.
Inputs None
Output None

 Streaming API Reference

4-25

Data Availability
getNumInputScansAvailable

Syntax int64_T
DAQStreamAnalog::getNumInputScansAvailable(uint64_T&
numScansAcquired)

Purpose Query the number of input scans available to be read by a read or
readWrite call.

Inputs None
Output Number of scans.

getNumScansOutputByHardware

Syntax int64_T
DAQStreamAnalog::getNumScansOutputByHardware(uint64_T
& numScansGenerated)

Purpose Query the number of scans output by the hardware by a write or
readWrite call.

Inputs None
Output Number of scans.

getOutputBufferSize

Syntax int64_T
DAQStreamAnalog::getOutputBufferSize(uint64_T&
outputBufferSize)

Purpose Query the DAQ device output buffer size in number of scans.
Inputs None
Output Buffer size in scans.

flushOutputBuffer

Syntax int64_T DAQStreamAnalog::flushOutputBuffer()
Purpose Empty the output buffer.

4 API Reference

4-26

Inputs None
Output None

isDeviceDone

Syntax int64_T DAQStreamAnalog::isDeviceDone(bool& isDone)
Purpose Poll the vendor driver immediately following a call to stop.
Inputs None
Output True if device is done streaming.

Transfer Data
read

Syntax int64_T DAQStreamAnalog::read(float64 * const
pReadBuffer, uint64_T numReadScans)

Purpose Read acquired data from the DAQ device into the read buffer.
Inputs pReadBuffer: buffer used by stream to store input data acquired

from the device.

numReadScans: number of scans to copy into the provided buffer.
Output None
Notes The stream is responsible for the lifetime of the buffer.

write

Syntax int64_T DAQStreamAnalog::write(float64 const * const
pWriteBuffer, uint64_T numWriteScans)

Purpose Write data from the buffer to the device for output generation.
Inputs pWriteBuffer: buffer used by stream to store output data to be

generated by the device.

numWriteScans: number of valid scans to copy from the provided
buffer.

Output None

 Streaming API Reference

4-27

Notes The stream is responsible for the lifetime of the buffer.

readWrite

Syntax int64_T DAQStreamAnalog::readWrite(float64* const
pReadBuffer, uint64_T numReadScans, float64 const *
const pWriteBuffer, uint64_T numWriteScans)

Purpose Simultaneously read and write data between the buffers and a DAQ
device duplex channel.

Inputs pReadBuffer: buffer used by stream to store input data acquired
from the device.

numReadScans: number of scans to copy into the provided buffer.

pWriteBuffer: buffer used by stream to store output data to be
generated by the device.

numWriteScans: number of valid scans to copy from the provided
buffer.

Output None
Notes The stream is responsible for the lifetime of the buffer.

See Also

Related Examples
• “Create Your Adaptor from the Demo Adaptor” on page 3-2

More About
• “Errors and Exceptions” on page 3-12
• “Channel Groups” on page 3-14
• “Streaming Input and Output” on page 2-10
• “State Machine Diagram” on page 5-2
• “Streaming Sequence Diagrams” on page 5-4

4 API Reference

4-28

• “Adaptor API Reference” on page 4-2
• “Custom Functions” on page 3-18

 See Also

4-29

State and Sequence Diagrams

• “State Machine Diagram” on page 5-2
• “Streaming Sequence Diagrams” on page 5-4
• “Foreground Streaming Sequences” on page 5-5
• “Background Streaming Sequences” on page 5-12
• “Sequence for Errors and Exceptions” on page 5-21

5

State Machine Diagram
This composite diagram shows the state machine for input, output, and duplex channels.

5 State and Sequence Diagrams

5-2

See Also

More About
• “Streaming API Reference” on page 4-23
• “Foreground Streaming Sequences” on page 5-5
• “Background Streaming Sequences” on page 5-12

 See Also

5-3

Streaming Sequence Diagrams
These sequence diagrams provide details of timing for streaming functionality. They
might be useful for debugging code during development of your adaptor.

• “Foreground Streaming Sequences” on page 5-5
• “Background Streaming Sequences” on page 5-12
• “Sequence for Errors and Exceptions” on page 5-21

5 State and Sequence Diagrams

5-4

Foreground Streaming Sequences
This topic includes sequence diagrams for finite analog input and output in the
foreground.

In this section...
“Sequence for Finite Foreground Input” on page 5-5
“Sequence for Finite Foreground Output” on page 5-7
“Sequence for Finite Foreground Duplex Channel” on page 5-9

Sequence for Finite Foreground Input
This diagram shows the timing sequence for a finite (fixed-size) analog input in the
foreground. It demonstrates the interfaces between a DAQ session, AsyncIO channel, and
a DAQ stream when a user is performing finite foreground clocked acquisitions using the
session interface.

 Foreground Streaming Sequences

5-5

5 State and Sequence Diagrams

5-6

Sequence for Finite Foreground Output
This diagram shows the timing sequence for a finite (fixed-size) analog output in the
foreground. It demonstrates the interfaces between a DAQ session, AsyncIO channel, and
a DAQ stream when a user is performing finite foreground clocked signal generation
using the session interface.

 Foreground Streaming Sequences

5-7

5 State and Sequence Diagrams

5-8

Sequence for Finite Foreground Duplex Channel
This diagram shows the timing sequence for a finite (fixed-size) simultaneous analog input
and output in the foreground. It demonstrates the interface between a DAQ session and
the AsyncIO channel when a user is performing a finite input/output operation using the
session interface

 Foreground Streaming Sequences

5-9

5 State and Sequence Diagrams

5-10

See Also

More About
• “Streaming API Reference” on page 4-23
• “State Machine Diagram” on page 5-2
• “Background Streaming Sequences” on page 5-12

 See Also

5-11

Background Streaming Sequences
This topic includes sequence diagrams for analog input and output in the background.

In this section...
“Sequence for Finite Background Input” on page 5-12
“Sequence for Continuous Background Input with Stop” on page 5-14
“Sequence for Finite Background Input with Wait” on page 5-16
“Sequence for Finite Background Input with Stop Race” on page 5-18

Sequence for Finite Background Input
This diagram shows the timing sequence for a finite (fixed-size) analog input in the
background. It illustrates the interface between a DAQ session and the AsyncIO channel
when a user is performing a finite background clocked acquisition using a the session
interface.

5 State and Sequence Diagrams

5-12

 Background Streaming Sequences

5-13

Sequence for Continuous Background Input with Stop
This diagram shows the timing sequence for a continuous analog input in the background,
with a stop request while the device is acquiring data. It illustrates the interface between
a DAQ session and the AsyncIO channel when a user is performing a continuous
background clocked acquisition, then calls stop while data is being acquired.

5 State and Sequence Diagrams

5-14

 Background Streaming Sequences

5-15

Sequence for Finite Background Input with Wait
This use case revisits the finite background acquisition, when all scans have been
acquired and the background operation is naturally stopping, and at the same time, the
user issues a stop command while the DAQ AsyncIO plugin is in the
“WaitingForDoneState.”

5 State and Sequence Diagrams

5-16

 Background Streaming Sequences

5-17

Sequence for Finite Background Input with Stop Race
This situation revisits the finite background acquisition, when all scans have been
acquired and the background operation is naturally stopping, and at the same time, the
user issues a stop command while the DAQ AsyncIO plugin is in the last iteration of the
“RunningState.”

5 State and Sequence Diagrams

5-18

 Background Streaming Sequences

5-19

See Also

More About
• “Streaming API Reference” on page 4-23
• “State Machine Diagram” on page 5-2
• “Foreground Streaming Sequences” on page 5-5

5 State and Sequence Diagrams

5-20

Sequence for Errors and Exceptions
This sequence diagram summarizes the DataMissed events and error handling.

 Sequence for Errors and Exceptions

5-21

See Also

More About
• “Channel Groups” on page 3-14
• “Errors and Exceptions” on page 3-12
• “State Machine Diagram” on page 5-2
• “Foreground Streaming Sequences” on page 5-5
• “Background Streaming Sequences” on page 5-12

5 State and Sequence Diagrams

5-22

Functions — Alphabetical List

6

buildAdaptor
Build adaptor for third-party data acquisition interface

Syntax
daq.sdk.utility.mex.buildAdaptor(adaptorName,customFunc,srcPath,
outputPath)
daq.sdk.utility.mex.buildAdaptor(adaptorName,customFunc,srcPath,
outputPath,vendorLib)
script = daq.sdk.utility.mex.buildAdaptor(___)

Description
daq.sdk.utility.mex.buildAdaptor(adaptorName,customFunc,srcPath,
outputPath) builds an adaptor for enumerating, configuring, and streaming data to and
from a data acquisition device driver.

Note This function requires that your system is configured with Microsoft Visual Studio
2013 or later.

daq.sdk.utility.mex.buildAdaptor(adaptorName,customFunc,srcPath,
outputPath,vendorLib) allows you to specify a custom library for the build.

script = daq.sdk.utility.mex.buildAdaptor(___) returns the script used for
the build. This can be useful for diagnostic purposes.

Examples

Build Custom Adaptor

Build the custom adaptor named MyAdaptor.

6 Functions — Alphabetical List

6-2

daq.sdk.utility.mex.buildAdaptor('MyAdaptor','custom_my', ...
 'c:\adaptors\sdk\daqadaptor','c:\adaptors\sdk\bin\win64');

View Adaptor Build Script

Build the custom adaptor and return the build script.
scr = daq.sdk.utility.mex.buildAdaptor('MyAdaptor','custom_my', ...
'c:\adaptors\sdk\daqadaptor','c:\adaptors\sdk\bin\win64');
scr

scr =

 'mex 'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\Shared\dispatcher.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\Shared\daqadaptor.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\Shared\daqstream.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\Shared\adaptorfactory.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\MyAdaptor.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\daqstream_analog.cpp'
'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor\custom_my.cpp'
-I'C:\Program Files\MATLAB\R2017\toolbox\daq\daqsdk\src\daqadaptor\Shared'
-I'C:\Program Files\MATLAB\R2017\toolbox\daq\daqsdk\src\include'
-I'C:\adaptors\daqsdk\src\daqadaptor\MyAdaptor' -DADAPTOR=MyAdaptor
-DDAQADAPTOR_EXPORT -DINT16_MIN=-32768 -DINT16_MAX=32767 -output MyAdaptor
-outdir 'C:\adaptors\daqsdk\bin\win64' -v -g COMPFLAGS='$COMPFLAGS -W3'
CXXFLAGS='$CXXFLAGS -std=c++11''

You can save this script to a file and further modify it. You can run your modified script
with eval or daq.sdk.utility.mex.runBuildScript. For syntax options, type

help daq.sdk.utility.mex.runBuildScript

Build with Custom Library

Use the custom library MyLibrary for building an adaptor.

pathToHeaderAndLib = 'C:\libraries\MyLibrary'
myLibrary.HeaderPath = fullfile(pathToHeaderAndLib,'include');
myLibrary.LibPath = fullfile(pathToHeaderAndLib,'lib');
myLibrary.LibName = 'MyLibrary';

 buildAdaptor

6-3

buildAdaptor('DemoAdaptor','custom_demo',adaptorPath,outputPath,myLibrary);

Input Arguments
adaptorName — Name of adaptor
char vector | string

Name of the adaptor, specified as a character vector or string.
Example: 'DemoAdaptor'
Data Types: char | string

customFunc — File containing custom functions
char vector or string

Name of the file containing the source code for custom functions, specified as a character
vector or string. The file must be in the folder identified by srcPath.
Example: 'custom_demo.cpp'
Data Types: char | string

srcPath — Path to adaptor source folder
char vector or string

Path to adaptor source folder, specified as a character vector or string.
Example: 'c:\temp\sdk\daqadaptor'
Data Types: char | string

outputPath — Path to adaptor MEX-file
char vector or string

Path to generated adaptor MEX-file location, specified as a character vector or string.
Example: 'c:\temp\sdk\bin\win64'
Data Types: char | string

vendorLib — Vendor library locations
struct

6 Functions — Alphabetical List

6-4

Vendor library locations, specified as a structure containing these three fields:

• HeaderPath — a character vector specifying the path to the vendor header.
• LibPat — a character vector specifying the path to the vendor static library.
• LibName — a character vector specifying the name of the static library, without file

extension.

Data Types: struct

Output Arguments
script — Build script
character vector

Build script returned as a character vector. This script indicates what the function ran to
build the adaptor.

See Also

Topics
“Create Your Adaptor from the Demo Adaptor” on page 3-2

Introduced in R2017a

 buildAdaptor

6-5

enableDemoAdaptorDiscovery
Allow SDK demo adaptor to be enabled for device discovery and usage

Syntax
daq.sdk.utility.enableAdaptorDiscovery

Description
daq.sdk.utility.enableAdaptorDiscovery allows the SDK demo adaptor to be
found and used in a data acquisition session. The adaptor is enabled until the end of the
MATLAB session or until execution of daqreset.

Examples

Enable the Demo Adaptor

Enable the demo adaptor and view its devices.

daqreset;
daq.sdk.utility.enableDemoAdaptorDiscovery;
devices = daq.getDevices

devices =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- ------------------
1 mw MWDev0 MathWorks MW314159

6 Functions — Alphabetical List

6-6

2 mw MWDev1 MathWorks MW314159
3 mw MWDev2 MathWorks MW628318

See Also
Functions
daqreset

Topics
“Demo Adaptor Description” on page 2-2
“Enable the Demo Adaptor” on page 2-5
“Session Workflows with the Demo Adaptor” on page 2-6
“Create Your Adaptor from the Demo Adaptor” on page 3-2

Introduced in R2017a

 enableDemoAdaptorDiscovery

6-7

